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Abstract. Almost half a century after Alfvén first conceived of the science of magnetohydrodynamics, it is
still possible to trace his intuitive thinking to explore physical processes heretofore not considered. The ideas
of magnetohydrodynamics (applicable to conducting fluids) can be transferred almost intact to purely
dielectric fluids, such that we can arrive at a generalized concept applicable to any fluid — conducting or
dielectric. In this sense, Alfvén's conception of magnetohydrodynamics may be ideationally even more
profound than it has been thought to be so far.

1. Historical Background

The essential ideas of electrodynamic interaction in matter had been formulated by the
turn of the century by André Marie Ampére, James Clerk Maxwell, Hendrik Antoon
Lorentz, and others. A significant ramification of these, however, was proposed by
Hannes Alfvén in 1942 when he predicted a form of wave behaviour in a magnetized
conducting fluid (Alfvén, 1942; Alfvén and Filthammar, 1963) that later came to be
known by his name. The principle underlying this phenomenon later formed the basis
of multifarious developments in plasma physics and space physics. It was Alfvén’s now
legendary scientific intuition that led him to combine Maxwell’s curl equations with
Lorentz’ force law (‘a current-carrying conductor in a magnetic field experiences a
force’) and Newton’s second law (‘force equals mass times the acceleration’) to deduce
the science of magnetohydrodynamics — interactions in a magnetized conducting fluid
involving the interchange of magnetic and kinetic energies. In the light of this same
intuition, it is instructive to explore the Ampére—Maxwell-Lorentz—Alfvén connection
to seek its lessons. In so doing, however, let us also invoke a simple aesthetic criterion:
that of completeness.

A prefatory comment is appropriate at the outset of this discussion which is
concerned with physical processes in an idealized, situation. We discuss Alfvén’s
concept of magnetohydrodynamics only in that context — in its ‘textbook’ sense. It is
now well-known that Alfvén has for some time sought to de-emphasize the frozen flow
concept and taught against its indiscriminate application — especially in the case of
tenuous plasmas in space (see, e.g., Alfvén, 1981). The present discussion of another
type of frozen flow in another, very different, medium is not intended to detract from
that effort and that teaching.
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2. The Magnetohydroelectric Effect

As is widely recognized now, the greatness of Maxwell’s intuition was rooted in his
conception of displacement current (free-space displacement current + polarization
current in dielectrics) that completed the troubled Ampére’s law (conceived with only
conductors in mind}, and provided an understanding of electromagnetic waves. Lorentz,
in adding his force law to these results, again considered only conductors and did not
say anything about dielectrics. And Alfvén then confined himself entirely to the
conductors, leaving unaddressed the dielectrics. We thus begin to sense a certain
incompleteness in the story of development of ideas, starting with Lorentz. If we
postulate a ‘Lorentz force’ in a dielectric, we can restore completeness to this develop-
ment.

The basic suggestion of the magnetic force on a pure dielectric material carrying a pure
polarization current follows from simple, straightforward arguments. Let us recall first
the derivation of the Lorentz force in the case of a conductor. A conduction current
consists of a flow of electrons (each having a velocity v, and a charge ¢, say) under the
influence of an applied electric field E. The total current density is J = Zqv,, where the
summation is taken over all the electrons in a unit volume. Each moving electron
experiences a force f; = gv, x B in the presence of a magnetic ficld B. These individual
forces on all the electrons are transmitted to the body of the conductor through collisions
with atoms. Thus the total force on a unit volumeis F = Zgv, x B = (Zgv,) x B=J x B.

No such flow of charges occurs in a dielectric carrying a pure polarization current, and
one is thus apt not to think in terms of the presence of a similar force. We note, however,
that there is here nevertheless a microscopic displacement of the positive and the
negative charges bound in the atoms and molecules of the dielectric, and these individual
charges are subject to the same Lorentz force as the free electrons in a conductor; the
positive charges ¢* and the negative charges ¢~ move in opposite directions under the
influence of a time-varying field E, with velocities v;* and v, , respectively. Thus the net
polarization current is J = (q¢*v,;" + ¢~ v, ). The force on an individual positive charge
is f* = g*v;* x B and on a negative charge, f~ = g~ v, x B. Clearly, they both point
in the same direction, giving a net force on each individual atom or molecule. The total
volume force is again formally given byF = Z(f* + )
=E(g"v;" + ¢7v;) x B=1J x B. From these simple arguments, we are now able to
make an important generalization: All substances (conductors and dielectrics) experience
the J x B force in a magnetic field. This provides the full complement of the force law
to the Maxwell’s equations.

We will now take the next logical step, and attempt to provide the dielectric
counterpart of Alfvén’s ideas.

Consider for simplicity a pure dielectric fluid (nonconducting, lossless) with a
polarizability ¥ and a dielectric constant & = (1 + ¥)¢, placed in a magnetic field B, and
moving with a velocity u (assumed nonrelativistic). Then the electric field E’ in the body
of the moving fluid is related to the field E in the laboratory (or rest) frame by (see, e.g.,
Stratton, 1941; Section 1.23)

E'=E +uxB, (1)
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so that the polarization current density in the body of the moving fluid is

J = xeoﬁl’. (2)
The current density in the rest frame may now be written as (op. cit.)
J=J +pu, 3)

where p, is the polarization space charge density in the fluid. This is the density of the
induced polarization charges that arise in the body of the moving fluid, any free charges
arising on a rigid bounding conductor. We now have

J=x£0|:E+§(uxB)]+ppu. 4

This may be recognized as the dielectric equivalent of the ‘Generalized Ohm’s Law’ of
magnetohydrodynamics.

The volume force on the fluid censists of the electromagnetic J x B force, and the
electrostatic force p,E (cf. Stratton, 1941; Section 2.21; we assume here that the fluid
is incompressible). Hence, the force balance equation (Newton’s second law) for the
fluid is

d
(W)= xB+ o, ©)

where p is the mass density of the fluid. Other force terms due to gravity, pressure
gradient, etc., are possible. The above relation is the fundamental force equation of
magnetohydrodynamic interaction in a dielectric fluid. It involves an interchange of
magnetic, fluid-kinetic and electrostatic energies. For this reason, the term ‘magneto-
hydroelectric interaction’ was proposed to describe the phenomenon (De, 1979a,b,
1980).

3. The Equation of Magnetohydroelectrics:
Magnetic Field Freezing and Dielectric ‘Alfvén Waves’

In order to develop our discussion further, it is necessary to obtain a relationship
between the bound polarization charge density p, and the electric field E. Consideration
of the charge build-up on an elementary capacitor will show that

Vergk=-p,. (6)
Recall now the Maxwell’s equations

V-B=0, @)

V x B=uJ + peE, (3)

VxE=-8B; 9)
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where y is the magnetic permeability of the fluid. Using Equations (7}, (8), and (9) in
Equation (4), we are now able to derive

= y 1
B=iV-B+L—Vx(uxB)+—Vx(ppu). (10)
pe 1+ y o &

Lt }

This equations contains all the essence of the magnetohydroelectric interaction when
taken in conjunction with Equation (5). While this latter equation does not enter directly
into the derivation of Equation (10), it determines whether or not the magneto-
hydroelectric effect is significant (Equation (10) by itself could be satisfied for arbitrarily
small values of B; see De, 1979Db).

When the first term on the right-hand side of Equation (10) dominates, we have

B =iv23, (11)

HE
the familiar equation for three-dimensional electromagnetic wave propagation in a

dielectric. When the second term dominates and y > 1, we arrive at the well-known
condition for frozen flow (cf. Alfvén and Filthammar, 1963)

i§=§V><(u><B). (12)
ot

Thus, in a medium radically different from what Alfvén was concerned with, we have
arrived at the same physical condition he had envisioned. In this state of frozen flow,
it is also possible to deduce an Alfvén wave-like wave behaviour (the ‘magneto-
hydroelectric wave’; see De, 1979a). Such waves propagate along magnetic field lines
with a velocity v given by

2 1 25 —1
02=c2(l+”—")(1+_+5’é) , (13)
x ¢l 1 @

where ¢ is the velocity of light in free space, and v, = B/(up)'/? is again a familiar
parameter that makes its appearance: the Alfvén velocity. It has further been shown (op.
cit.) that a fully generalized wave behaviour can be derived in an arbitrary medium which
is partly conducting and partly dielectric, and that in various appropriate limits this wave
reduces to the ordinary electromagnetic wave, the'’Alfvén wave and the magnetohydro-
electric wave,

4. Magnetic Flux Amplification and Electric Field Freezing

Our discussion so far has developed in close parallelism with conventional magneto-
hydrodynamics. We now wish to venture somewhat far afield to explore if anything more
can be gleaned from our formulation thus far. When the last term on the right-hand side

-
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Equation (10) dominates, there arises a state described by

B = l‘? X (p,u). (14)
£
The induced magnetic field may now be perpendicular to the fluid motion, and parallel
to the original static magnetic field. This is ot the state of frozen-in magnetic field lines:
rather, it indicates an amplification of the magnetic flux resulting from an exchange of
energy among the three fields (magnetic, electric, and velocity). A magnetic flux tube
here may be imagined to be constricted. As we shall see below, this is in fact a state
of frozen-in electric field lines (a concept that would be meaningless in the case of a
perfectly conducting fluid).
Upon using Equations (6) and (9) in the above equation, we obtain

E= - (V- Eu, (15)

£=2pu; (16)
£

the implications of which are immediately obvious: the change in the electric field E
equals the divergence of the field times the fluid velocity — i.e., it owes itself to a
movement of the polarization space charges along with the fluid. The electric field lines
are ‘tied’ to these space charges and move along with them.,

5. Remarks

From the above discussion, it follows simply that one could erect a generalized
formalism for magnethydrodynamic interaction in a fluid of generalized property
(conducting and dielectric). In the limit of infinite conductivity, such a formalism would
lead to the state of frozen-in magnetic field lines; in the other limit, that of infinitely high
dielectric constant, a state of frozen-in electric field lines is possible. In this sense,
Alfvén’s conception of magnetohydrodynamics may be ideationally even more profound
in its scope than it has been thought to be so far. The physical realms of manifestation
of the conducting and the dielectric effects, however, differ greatly. Frozen flow in
conducting fluids is favoured for low frequencies and large length scales; in dielectric
fluids quite the opposite is true. Thus the realms of applicability are also very different.
Whereas the former effect has found application inl space science and in large scale
devices in the industry, the latter effect — whose applications, if any, may well lie far into
the future — will conceivably apply to experiments and devices involving motions at
microscopically small physical length scales.
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